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Mathematical models: what for ?

◮ Models as “Data Base” to store biological knowledge

◮ Models as design tools

◮ Models as logical analysis of causality chains

◮ Models as guidelines for the choice of experiments

For the 2 last purposes, models can deviate far from biological
descriptions but remain very useful: “Kleenex” models !



Static Graph v.s. Dynamic Behaviour

Difficulty to predict the result of combined regulations

Difficulty to measure the strength of a given regulation

Example of “competitor” circuits

Multistationarity ?
Homeostasy ?

—

+

+

mucus

+ Alginate Muc-B

Many underlying models ≈ 700 qualitative behaviours



Formal Logic: syntax/semantics/deduction

gold=Computer

green=Mathematics

correctness

Rulesproof

Semantics
Models

Syntax

Deduction
proved=satisfied

completeness

Formulae

cyan=Computer Science

M |= ϕ

Φ ⊢ ϕ

satisfaction
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Multivalued Regulatory Graphs
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Regulatory Networks (R. Thomas)
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Absent y helps : Kx,y

Both : Kx,xy
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State Graphs
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CTL = Computation Tree Logic

Atoms = comparaisons : (x=2) (y>0) . . .

Logical connectives: (ϕ1 ∧ ϕ2) (ϕ1 =⇒ ϕ2) · · ·

Temporal modalities: made of 2 characters
first character second character

A = for All path choices X = neXt state
F = for some Future state

E = there Exist a choice G = for all future states (Globally)
U = Until

AX(y = 1) : the concentration level of y belongs to the interval 1 in all
states directly following the considered initial state.

EG(x = 0) : there exists at least one path from the considered initial

state where x always belongs to its lower interval.



CTL to encode Biological Properties

Common properties:
“functionality” of a sub-graph

Special role of “feedback loops”
—
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– positive: multistationnarity (even number of — )
– negative: homeostasy (odd number of — )

y

x

y

x

(0,1) (2,1)(1,1)

(2,0)(0,0) (1,0) (0,0) (1,0) (2,0)

(2,1)(1,1)(0,1)

Characteristic properties:

{

(x = 2) =⇒ AG (¬(x = 0))
(x = 0) =⇒ AG (¬(x = 2))

They express “the positive feedback loop is functional”

(satisfaction of these formulae relies on the parameters K
...

)



The Two Questions

Φ = {ϕ1, ϕ2, · · · , ϕn,H} and M = —
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Kx · · ·Kx,x · · ·Kx,xy · · ·

. . .

1. Is it possible that Φ and M ?
Consistency of knowledge and hypotheses. Means to select
models belonging to the schemas that satisfy Φ.
(∃? M ∈ M | M |= Φ)

2. If so, is it true in vivo that Φ and M ?
Compatibility of one of the selected models with the biological
object. Require to propose experiments to validate or refute

the selected model(s).

→ Computer aided proofs and validations



Theoretical Models ↔ Experiments

CTL formulae are satisfied (or refuted) w.r.t. a set of paths from a
given initial state

◮ They can be tested against the possible paths of the
theoretical models (M |=Model Checking ϕ)

◮ They can be tested against the biological experiments
(Biological_Object |=Experiment ϕ)

CTL is a bridge between theoretical models and biological objects
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Generation of biological experiments (1)

Set of all the formulae:

ϕ = hypothesis

ϕ



Generation of biological experiments (2)

Set of all the formulae:

ϕ = hypothesis
Obs = possible experiments

Obs

ϕ



Generation of biological experiments (3)

Set of all the formulae:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences

Obs

ϕ



Generation of biological experiments (4)

Set of all the formulae:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Obs

ϕ

S



Generation of biological experiments (5)

Set of all the formulae:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability:
S =⇒ ϕ ? Obs

ϕ

S



Generation of biological experiments

Set of all the formulae:

ϕ = hypothesis
Obs = possible experiments
Th(ϕ) = ϕ inferences
S = sensible experiments

Refutability:
S =⇒ ϕ ?

Best refutations:
Choice of experiments in S ?
. . . optimisations

Obs

ϕ

S



How to validate a multistationnarity

—

+

+

mucus

+ Alginate Muc-B

Hypotheses:

{

(Alginate = 2) =⇒ AG (Alginate = 2)
(Alginate = 0) =⇒ AG (Alginate < 2)

Assume that only mucus can be observed:
Lemma: AG (Alginate = 2) ⇐⇒ AFAG (mucus = 1)
(. . . formal proof by computer . . . )

→ To validate: (Alginate = 2) =⇒ AXAG (mucus = 1)



(Alginate = 2) =⇒ AXAG (mucus = 1)

A =⇒ B true false

true true false
false true true

Karl Popper:
to validate = to try to refute

thus A=false is useless

experiments must begin with a pulse

The pulse forces the bacteria to reach the initial state Alginate = 2.
If the state is not directly controlable we need to prove lemmas:

(something reachable) =⇒ (Alginate = 2)

General form of a test:

(something reachable) =⇒ (something observable)
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Hypothesis driven model simplifications

Successive simplified views of the studied biological object:

Model
M1

satisfies
ϕ1

⇐⇒

Model
M2

satisfies
ϕ2

⇐⇒

Model
M3

satisfies
ϕ3

⇐⇒ . . .



Simplifications via gene removing (Naldi)
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Simplifications via level folding

folding

0

0 1 2 x

1

2

y

folding
1

0

0 1

y

x

0

0 1 2 x

2

1

3

3 4

ρx = 0 ρx = 2ρx = 1

ρy = 0

ρy = 1

ρy = 2

2

1

0

0 1 2 x

y

y



Simplifications via subgraphs

Embeddings of Regulatory Networks:
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Preserved behaviour ?Studied behaviour

Necessary and sufficient condition on the local dynamics of the
“input frontier”

. . . Also fusion of genes, etc.
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“Data Base” interaction graph
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The target question

Impact of the day length on the persistence of the circadian circle ?

=⇒ framework with time delays:
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(size of rectangular areas = delays)

+ extension of temporal logic with delays. . .



Fold levels and remove PPAR
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Remove Clock and “tunnel” pathways
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Separate inhibitors/activators of Clock-BMAL
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Fusion of all inhibitors

Genes
Proteins

(N)

and Light prevents PER-CRY to enter the nucleus:
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12 hours model
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Winter model
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Summer model
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Jet lag + training
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Take Home Messages

Make explicit the hypotheses that motivate your research

A far as possible formalize them to get a computer aided approach

Behavioural properties are as much important as models

Mathematical models are not reality: let’s use this freedom !
(several views of a same biological object)

Modelling is significant only with respect to the considered
experimental reachability and observability (for refutability)

Formal proofs can suggest wet experiments

“Kleenex” models help understanding main behaviours


